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I. INTRODUCTION 

The present report describes a new device in which unusual discharge 

characteristics with generation of neutrons from nuclear fusion reactions 

are observed at very modest input power levels of the order of 100 W. 

In addition, X-rays of energy higher than what the 1000 V amplitude of 

the applied high frequency (HF) voltage would normally allow, are generated. 

The two main advantages of a HF discharge in general are: 1) the 

principal possibility of resonance phenomena which may accelerate particles 

or may excite collective modes up to very high energies with modest RF power 

inputs; 2) the absence of electrodes in contact with the plasma. The 

spectacular results obtained with the new device are at least in part due 

to these two major advantages. 

There is, however, another important, fundamentally new advantage 

which is directly related to the name of the new device: ENRAD. This 

acronym means "Electrostatically Confined Nuclear Radiation Device" and 

was coined by the authors on the basis of physical intuition long before 

the novel confining principle of the device, which justifies its name, 

was understood. The new advantage is based on a new confinementprinciple 

which is stated here for the first time: rather than confine the plasma 

from the outside with a field, it is preferable to confine the field from 

the outside with a plasma, i.e., to have the electric field localized in- 

side a radiation bubble, surrounded by a plasma which in turn is embedded 

in layers of neutral gas. The basic reason is that the field is coherent, 

and, therefore, characterized by fewer degrees of freedom and mOre stable, 

while the plasma is incoherent and characterized by a larger number of 

degrees of freedom, many of which are very unstable. The plasma does not 
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need to be in thermal equilibrium but must form a resonant state together 

with the field. This combined state of plasma and electrostatic field is 

a new type of solution of a nonlinear equation which describes what is in 

essence a localized standing electrostatic (Langmuir) wave, a particular 

type of soliton, and a special case of what has become known in the last 

decade as plasma caviton. The properly tuned discharge consists of one or 

more pairs of luminous disks. Each pair is invariably separated by a 

sharply defined dark space of about 0.5 cm width which does not depend on 

pressure and is, therefore, fundamentally different from the familiar 

striations often observed in d.c. or a-c. discharges. The disks occur 

only in pairs, and are the source of a spectrocopically identified axially 

directed beam of deuterons, and also of keV x-rays. 

On the basis of this experimental evidence, we have been able to iden- 

tify the discharge with just one pair of disks as a ground state electro- 

static plasma caviton and the states with n pairs of disks as the corres- 

ponding (n-l)-th excited cavitonic state. The caviton is resonant with, 

and pumped by, the applied I-IF field. The sharply defined dark space is 

occupied by the strong localized electric field of the caviton, which 

exceeds the amplitude of the applied HF field by a factor of the order 

of lo3 and which oscillates at a frequency which differs from the local 

plasma frequency by a small amount determined as the eigenvalue of the 

cavitonic state. The luminous disks represent the walls of the density 

cavity which houses the localized electric field of the caviton, and are 

active in defining the caviton. Inside the caviton the plasma concentra- 

tion is by about two orders of magnitude lower than the surrounding plasma 

concentration due to the action of the ponderomntive force of the localized 

field which pumps the plasma out and thereby reduces the convective loss 
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of energy of the caviton in form of electrostatic.(Langmuir) waves and 

electromagnetic waves. This, in turn, facilitates the further increase 

of the localized resonant electric field and the deeper excavation of the 

density cavity. 

The initial generation of the caviton is explained in detail in the 

present report (Sec. V). The explanation is based on a resonance between 

the applied HI? field of frequency w and the plasma frequency w = (4nne2/m) l/2 
P 

in the center of the device as soon as the HF power is applied to the device 

and as soon as the electron concentration reaches the level mo(m/4re 2 l/2 in ) 

the center of the device. The ENRAD cavitons are obtained at pressures of 

the order of 1 torr which is about a thousand times higher than the pressures 

at which cavitons were obtained previously. 

Due to its unique resonance properties, the ENRAD device has the po- 

tential to be developed into a controlled fusion device. As suggested by 

Handel in 1974, .natural plasma cavitons, pumped by huge atomspheric H20 

masers may already be known as ball lightning. 

The intriguing question which arises is why does a plasma caviton 

arise in this device and not in any other simple d.c. or a.c. gas discharge? 

To understand why, we note that due to the ring-shape of the electrodes 

and their positioning outside the discharge tube, an extended quasi-homo- 

geneous high-electric field volume is present in the center of the device. 

This is an electrostatic analog of the familiar Helmholtz coils. Due to 

the remoteness of all solid surfaces which could produce increased plasma 

recombination, the plasma density exhibits an extended, flat maximum in 

the center of the device, with a quasi-homogeneous concentration of 

electrons and ions which is steadily increasing from zero after the HF 

field is turned on. After lo-20 periods of the HI?-fields at the nominal 



field amplitude, the local electron plasma frequency (4We2/m) l/2 in the 

center of the device approaches the frequency 'J-), of the applied field. 

Since the dielectric constant of the plasma (derived in Sec. V) isE=l- 

wp2/w2 I it approaches zero in the median plane, i.e., at the center of the 

device. On the other hand 8 = Eg = const. in the space between the elec- 

trodes. Therefore, in the resonant volume at the center of the device 

2 + 03 when n increases to the point where W = W Moreover, 
P' 

this strongly 

enhanced electric field amplitude is in resonance with the free electrostatic 

oscillations of the electrons. Indeed, under the influence of the strong 

electric field present only in the median plane of the device electrons 

are depleted on the +E side and accumulated on the -E side. Electro- 

static repulsion, which is the restoring force of the Langmuir waves, causes 

the electrons to rebound after T where T 
P/2' 

= 2T/W . However, since m. = 
P P 

w in the center plane of the device, 
P 

the electric HJ? field will have changed 

its direction also meanwhile. Therefore, the electrons will be accelerated 

again, and rebound even stronger, like a harmonic oscillator, whose period 

does not depend on the amplitude; this is true for electrostatic waves. 

The electrons are, therefore, continuously accelerated by the electric field 

which is always in phase. The resonance process enhances the average kinetic 

energy and the kinetic pressure of the electrons in the resonance volume 

dramatically, thereby creating a density cavity. The amplitude of the 

electric field and of the electronic oscillation would increase indefinitely 

if it were not bounded by two processes which carry away approximately 

equal amounts of energy: a) the generation of high amplitude Langmuir waves 

which propagate away from the central plane in both directions towards the 

hollow electrode-planes, and b) the acceleration of ions up to energies of 

tens or hundreds of keV, leading to fusion reactions at very modest HF 

powers. 
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The creation of the initial density cavity reduces the loss of electro- 

magnetic and Langmuir wave energy due to the formation of a resonator-like 

structure with conducting cavity walls. This reduction in loss causes 

another, additional electric field increase in the caviton and in turn 

a deeper excavation of the density caviton until a dynamic equilibrium 

structure emerges, with very high values of the electrostatic and plasma 

kinetic energy, with vacuum inside, limited by nonlinear and loss phenomena, 

the ENRAD caviton. This is a dark space between two luminous disks. 

The inner side of the disks appears blueish due to the action of primary 

electrons and ions which have higher energies, while the outside regions 

of the disks appear reddish in color due to the lower excitation energies 

of the bombarding particles and of the radiating species in the tails of 

the plasma distribution of the caviton. 

We can also understand the initial large accumulation of electromagnetic 

field energy at the resonant region in the center of the device by follow- 

ing the field lines of the Poynting vector z = & E'x g which represents 

the energy current density. These enter the discharge tube radially, 

l-e., laterally through the glass walls, perpendicular to Eland B'. The 

energy flows in with the group velocity v = 
g 

drOo/dk = cdcwhich is derived 

from the dispersion relation (Eq. 4.6) 

wo2 = up2 + c2k2 

and is therefore v = c/:lwp2/uo2). At the center of the device W = W 
g P o 

and v 
g 

= 0, i.e., the buck stops there... Energy, again would pile up 

indefinitely because in the electromagnetic energy current the product of 

energy density w and group velocity must be constant in stationary con- 

ditions, as required by the continuity equation 
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++ v-(w Cg) = 0 

i.e. 

-f 
s=wG = const. 

g 
along the field lines of s. 

Since v 
9 

-f 0 we have again w-+ co, This line of thought is equivalent to 

the initial D = SE argument, used above. 

The most amazing property of the ENRAD device isthe excellent 

stability of the obtained cavitons against instabilities and collapse. 

This allows the unlimited C.W. operation of the device at the relatively 

high pressures of more than 1 torr which exceeded by at least three orders 

of magnitude any previous observations of laboratory cavitons. Concomi- 

Mntly, the electric field and the particle energies are also by about 

3-4 orders of magnitude larger in our device, therefore allowing for 

fusion reactions and x-ray emission. 

We are sure that the pressure and the energy density can be further 

enhanced in the ENRAD device and we believe that this is the way to solve 

the fusion problem. 



II. EXPERIMENTAL SETUP 

1. The ENRAD Principle 

ENRAD stands for electrostatically confined nuclear radiation device. 

Basically, the intention is to contain a field inside a plasma, rather 

than going the usual way where a plasma is confined within some sort of 

field configuration. For the field to exist within the plasma, it has to 

displace the major part of the plasma within a certain region (dig itself 

into the plasma). The result should be a low density region surrounded 

by a steep density gradient. The resulting plasma cavity (caviton) gives 

charged particles trapped inside an opportunity to obtain energy in the 

applied radiofrequency field (RF) until they become too energetic to follow 

the vibrations of the RF field and are ejected from the cavity region. They 

collide with the plasma wall giving rise to excitation, ionization and possi- 

bly some fusion reactions. 

There are probably more than one electrode configuration which will 

shape a field in a way that it can "dig in." The present experiments 

used two cooper rings, placed outside of the discharge tube, so that the 

coupling is capacitive. Electrode distance is about twice the electrode 

diameter. The wavelength of the applied RF is large compared to the elec- 

trode distance or diameter, so that initially a fairly homogeneous field 

can be expected between the electrodes. 

In the following two different discharges which are based on the ENRAD 

principle are discussed. Both use the same electrode configuration. One 

discharge is a pulsed DC-high voltage discharge, while the other one is 

a low voltage RF discharge. 

The work concerning the high voltage discharge was done more than 

10 years ago, while the work on the RF discharge was done under the present 
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effort. However, only now, after having the results 

can we understand the results of the older work. 

of the RF discharge, 

2. High Voltage Discharge 

The high voltage discharge is excited by a voltage pulse, 5 I.lsec wide 

and 60 kV high. Its repetition rate is 50 hz. The voltage pulse is 

capacitively coupled to the plasma, using the ENRAD configuration. The 

relatively high repetition rate has several advantages. One of them is 

the outgassing of the structure which results from repeated electrical 

pulses, driving out contaminating wall gases and permitting the operation 

of a stable relatively reproducible plasma. Another advantage is that 

the residual gas pressure can be stabilized after a short time of operation. 

The pulse generator used can produce voltage pulses as high as 100 

KV and currents as large as 100 A. The pulse duration is approximately 

five microseconds and the repetition rate may be either 60 Hz or 400 Hz. 

The shape of the pulse is, to a large extent, determined by the load char- 

acteristics which in the case of the gaseous discharge vary considerably 

with the operating condition. Since the high field gradients produce a 

large amount of ozone in the surrounding atmosphere, the tube and elec- 

trodes have been enclosed by a large steel tank equipped with suitable 

ports for observation. This tank serves to confine the ozone and prevent 

its entrance into the experimental environment. It also acts as a good 

X-ray shield. Still another advantage of this enclosure is the electrical 

shielding which results, reducing interference to measuring equipment 

in the immediate vicinity of the discharge. 

Figure II-1 shows the schematic diagram of the power supply. The 

trigger circuits consist of an adjustable phase, synchronous pulse 

generator which serves to trigger an intermediate level trigger, a thyratron 



Figure II-1 Schematic Diagram of Power Supply and Discharge Tube. 
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circuit which, in turn, triggers a high-power ignitron circuit supply- 

ing energy to the high-level pulse transformer which supplies the 100 KV 

pulse. 

Energy for the high-level pulse is obtained by discharging a trans- 

mission line which can be adjusted to produce various wave forms of the 

resultant pulse. This energy storing line is charged by a diode and 

fired during the nonconducting portion of the cycle thus establishing 

synchronous operation. The pulse repetition rate is thus established by 

the source frequency. Such modulators are employed in most high-powered 

pulse work. 

A switch is provided to change the pulse polarity. In the following 

discussions, the term "positive" or "negative polarity" is defined as 

the potential of the ungrounded electrode. 

The discharge tube consists of a cylindrical Pyrex glass tube 200 

cm long and 8 cm in diameter. Three cylindrical Al-electrodes are placed 

on the outside of the tube as can be seen in Figure 11-2. This figure 

also shows the above mentioned enclosure. As pointed out, the power input 

is transferred to the plasma by capacitive coupling. The central elec- 

trode has guard rings in order to reduce the corona discharge on the out- 

side of the tube. The tube was filled with either hydrogen or deuterium 

at pressure levels between 10 and 200 microns. 

A closer look at the relationship between current and voltage reveals 

an important feature of this discharge, namely that the current rings in 

the 1 Mhz range, although the applied voltage, is a dc pulse. This can be 

seen in Figure II-3 where the applied voltage pulse is +50 KV high and 

4 usec wide, while the current rings (positive and negative values of 

current) at high frequencies. 
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Figure II-3 Relation between Current (Top Trace) and Voltage (Botton Trace) 
at 50 kV Pos. Pulse Polarity (Time Base 2 usec/cm) for various 
pressures. 
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3. Iow Voltage Discharge 

a) Description 

The low voltage system consists of a test section, a matching circuit, 

a driver unit, a gas handling system-pump station and a diagnostic unit as 

shown in Figure 11-4. The driver unit is a 500 watt RF power supply (0.5 

to 1.7 Mhz) feeding a matching circuit instead of a conventional antenna 

system. The matching circuit is a variable L-C network which allows match- 

ing of the output impedance of the RF power supply to the imput impedance 

of the test section. 

The test section consists of a 80 cm long glass tube (7740 borosil- 

licate glass) having an outer diameter of 10 cm. According to the ENFWI 

Principle, the HF is capacitively coupled into the fill gas of the test 

section by two ring electrodes which are again attached to the outside wall 

of the glass tube. Intra-electrode distance is typically 5 - 50 cm. 

The gas fill for the test section is introduced through the gas 

handling system while the vacuum is monitored and maintained through a 

separate port. This configuration allows studies with either static or 

dynamic gas fills. 

b) Operational Characteristics 

Dike all gas discharges, this device has a breakdown voltage which 

is a function of pressure and electrode separation. It is usual to pre- 

sent such relationships in the form of E/p vs pd. (E: electric field, 

p: pressure, d: electrode distance). The breakdown E/p is shown in Figure 

II-5 for a frequency of 1.34 Mhz, which is the primary frequency used for 

the data in this report. The dependence on frequency is weak. As a 

comparison, an argon HF-discharge at 3000 Mhz is shown. [II-l] The dis- 

charge characteristics are quite similar despite the large difference in 
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Fig. 11-6. Typical pair of plasmid disks in Hydrogen. 



Fig. 11-7. Two Pairs of Disks in Hydrogen. 



Fig. 11-a. Three Pair of Disks in Hydrogen. 



Fig. 11-9. One Pair of Disks in Helium. 
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frequency, especially at larger pd values. It seems that after the cycle 

time is shorter than the effective recombination time or diffusion time 

(whichever is shorter), the plasma is stationary and an increase in the 

frequency has very little effect as far as maintenance of the discharge 

is concerned. (This is not to say that other properties such as neutron 

emission are independent of frequency.) 

Once the discharge is ignited, particular E/p ratios will establish 

certain well defined visible plasma structures. These structures are 

pairs of disks in the following referrred to as "cavitons" which are 

separated by a very well defined dark space. (The separation appears 

black to the eye.) A pair of disks (a caviton) will exist over a certain 

pressure range (the applied voltage is kept constant) and if a certain 

critical pressure is exceeded, the plasma transforms (abruptly) into 

another mode consisting of 2n disks, or n cavitons where n is an integer. 

Again, each pair is separated by a very well defined dark space. 

Figure II-6 shows such a caviton (n=l) while Figure II-7 and II-8 

show two and three cavitons in deuterium. If helium is used, cavitons 

still can be obtained but are not as well defined as in deuterium or 

hydrogen. Figure II-9 shows such a caviton in helium. In any case the 

location of the cavitons is always symmetrical to the electrodes. 

The cavitons should not be mistaken with the familiar striations 

(moving or stationary) of d-c or a-c discharges. The difference is that 

in these discharges the distance between striations changes when the 

pressure is changed; while for the cavitons described here the distances 

remain constant even if the pressure is changed until the critical pressure 

is reached where abruptly the next higher number of disk pairs is formed, 

having then different distances from each other. This relationship be- 

tween pressure and number of disks can be seen in Figure 11-10. 
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If the pressure is too low for formation of cavitons another phenome- 

non can be observed, which is referrred to as degenerated cavitons. 

The cavitons are no longer suspended between the electrodes but are 

now attached to them. It appears that the one wall of the caviton is 

now a crescent, while the other wall is formed by the sharp edge of the 

electrode. Figure II-11 shows a photograph of such a degenerated caviton. 

Since there is a minimum pressure for formation of regular cavitons, 

an obvious questions is-- if there is also a minimum frequency? There- 

fore, the minimum frequency required to form a disk for a given pd-value 

was determined. In Figure II-12 this relationship is shown. The elec- 

trode distance (d) was varied while the pressure was kept constant (p = 

0.6 torr). At any frequency below the straight line in Figure 11-12, 

no cavitons will be formed, but a regular diffused discharge will appear. 

However, operation above the straight line will have little effect on 

the then established cavitons. This is confirmed up to 1.7 Mhz. 

Another important piece of information relates to the question if 

the plasma remains in existence during the time when either voltage or 

current is zero. If the plasma should cease to exist at that time, re- 

start of the discharge would be required each time. In this case, con- 

finement of the plasma would not have been achieved. 

Demonstration of a continuous plasma can be done by determining the 

relationship between light output, and electron density. The light out- 

put indicates the presence of excitation rather than ionization. However, 

lifetimes of excited states are typically 10 -8 
seconds, two orders of 

magnitude shorter than the cycle time. Therefore, if the electron density 

were to be lowered significantly or should totally disappear, light out- 

put would cease between cycles since electrons are undoubtedly responsible 
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Fig. 11-11. Degenerated Caviton. 
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for excitation of the atoms. Therefore, we believe that the intensity of 

the observed Balmer lines is a good indicator for the presence of electrons. 

Figure II-13 shows a series of oscilloscope traces depicting total 

luminosity versus time for different operation conditions. Figure II-13a 

is the degenerated caviton mode. Here the lowest light output is observed. 

However, it is fairly constant with time, seemingly very well confined. 

(The signal is negative in all oscilloscope traces in Figure 11-13.) When 

more cavitons are added, several types of oscillations ,can be observed. 

However, none of these oscillations have a frequency which is equal to or 

harmonic of the applied frequency. The time deflection on the oscilloscope 

traces is: 5 msec/cm. The conclusion which can be drawn from this figure 

is that the light intensity never equals zero, confirming that the plasma 

is in existence at all times. 
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11-13. Total Luminosity Output of ENRAD Device. 
Time Deflection 5 msec/cm. 
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Fig. II-13 Continued. 



III. EXPERIMENTAL RESULTS 

1. X-Ray Emission‘ 

In both discharges emission of x-rays took place. While this can be 

expected in the case of the high voltage discharge, it is not immediately 

evident that this would also happen in the case of the low voltage dis- 

charge. 

The x-ray emission from the latter was, indeed, very weak and since, 

at the same time, neutrons were observed' in the discharge, we cannot 

state beyond a,reasonable doubt that the observed TLU readings and x-ray 

film exposures were actually caused by x-rays and not by a Y-background. 

Since information on x-ray emission from the low-voltage discharge 

is so marginal, we will discuss first the x-ray emission from the high 

voltage discharge. Since the geometrical set up is very similar, it 

should give a good indication what kind of x-ray emission can be expected 

from a caviton forming electrodeless RF discharge. 

a) The hiqh voltaqe discharqe is a strong source for x-ray radiation. 

This radiation seems to appear at or after the onset of the high frequency 

oscillation's of the current and is, therefore, somewhat delayed in re- 

spect to the voltage pulse. This can be seen in Figure III-l where the 

upper trace is the x-ray radiation and the lower trace is the applied vol- 

tage. This figure can be compared to Figure II-3 where the current trace 

can be found. Careful comparison shows that the x-ray radiation starts 

after the first full swing of the current oscillations. 

The location of the x-ray emitting areas within the discharge tube 

was determined by wrapping a Xodak-Medical X-Ray Film enclosed in a light 

tight envelope around the discharge tube in the region between the elec- 

trodes. Figure III-2 shows the location where the film was placed, while 

28 
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Figure III-1 Radiation and Voltage (common time base 2 psec/cm) 

Upper trace: Radiation 

Lower trace: Voltage 
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Figure III-2 Location'of X-ray Film on Discharge Tube. 
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a more detailed sketch of the whole device, including its enclosure, can 

be found in an earlier figure (Fig. 11-Z). The results (positive) of the 

wrap around is shown in Figure 111-3. The most interesting features are 

the crescent shaped exposure patterns and the sharp transition from exposed 

to unexposed areas, although the long side bars are also a phenomenon 

which needs to be explained. In Figure III-3 some of the crescents over- 

lap, since the x-ray film overlapped when it was placed. Therefore, a 

positive of the x-ray negative, namely the one shown in Figure 111-3, was 

rolled up and glued together. The unexposed part was cut away. Figure 

III-4 then shows a photograph of this composite. As one can see there 

are 3 symmetrically aligned crescents, quite similar in appearance as the 

one shown in Figure 11-11, although the latter figure is a photograph of 

the visible glow of the low voltage discharge. 

The pulsed high voltage discharge has a feature which the low voltage 

RF discharge does not have. Namely, since a dc voltage pulse, which is 

applied, can run the ungrounded electrode either positive or negative. 

As it turns out, this makes a difference as far as x-ray production is 

concerned. To show this the x-ray radiation was observed side on using 

a collimator and scintillation detector. Figure III-5 shows the general 

outlay of the discharge tube, the shielding enclosure and the location 

of the detector. Scans parallel to the axis of the discharge tube were 

made and it was found that the maximum radiation emissions occur close 

to the negative electrode, which is also the electrode where the crescents 

were observed. Figure III-6 shows the scan with the center electrode 

negative, while Figure III-7 shows the scan with the center electrode 

positive, which means the grounded electrode is negative. As can be seen, 

the radiation maximum is always toward the negative electrode. Its loca- 

l 
- 
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Fig. 111-3. Wrap around x-ray from older ENRAD like device. 
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Fig. 111-I. Three Dimensional Sketch of X--Y Pattern-Around T&e. 
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tion is at a certain distance (d) away from the negative electrode. This 

distance is a function of pressure, as shown in Figure 111-8. The higher 

the pressure, the closer it is to the negative electrode. Observations 

of the x-ray emission were also made end-on and typical x-ray positives 

obtained are shown in Figure 111-9. The x-ray films were placed on the 

tube x-axis 1, 3 and 5 feet away from the window. The exposure which 

shows an intense inner core was 1 foot away while the ones which show an 

unexposed inner core were further away. If one would assume that the 

x-rays come from a layer on the inner surface of the tube (or from the 

crescents close to the inner surface of the tube), one can explain Figure 

111-g. This is done in Figure III-10 and Figure 111-11. The distance of 

the x-ray film is plotted here in feet, in axial direction while the size 

of the pattern is plotted in mm in radial direction. In this way one 

can triangulate back to the x-ray emitting layer. The location of this 

layer agrees with the side on scans of Figure III-6 and 111-7. Its struc- 

ture, of course, can be seen from the wrap-around in Figure 111-3. 

Of course, if an agreement with the side on scans exists then also 

a switch in polarity must show up in the end-on x-rays. This is, indeed, 

the case and the difference can be seen by comparing Figure III-6 to 

111-7. Indeed, the x-ray emission is moved closer to the negative elec- 

trode. 

B. X-ray Emission from the Low Voltage H-F Discharge 

Since the x-ray emission from this discharge is considerably reduced 

in intensity, no clear determination of its structure could be made. How- 

ever, from the above described results, one can roughly estimate the shape 

and structure of the expected x-ray exposures. 

- 
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Fig. 111-g. End View X-Rays from Older ENFtAD-like Device. 
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Fig. 111-g. Cont. Shows a Shadowgraph of a Film Holder. 
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Since x-ray films are a good dielectric, it was not possible to wrap 

the discharge tube. The RF would heat the x-ray film and melt it. 

Therefore, a film was placed next to the tube (parallel to the tube axis) 

without bending it about 1 cm away from the surface of the tube. The re- 

sultant exposure (negative) is shown in Figure III-12 which has to be 

compared to the wrap-around (Figure 111-3). Since the exposure is very 

faint, only superficial conclusions can be drawn. Figure III-12 was taken 

with a caviton in the center of the discharge tube. There is, indeed, a 

region of increased x-ray emission in the center of Figure 111-12. The 

other two maxima at the electrode must correspond to the (smaller) maxima 

on the positive electrode, which appear in FiguresIII-6 and III-i'. 

For the end-on exposures, one would not expect a pattern as in Figure 

111-9, since the discharge tube was all glass and did not have the stain- 

less steel neck which was responsible for the inner core and outer zone 

definition, as seen in Figure 111-9. Therefore, one really could only 

expect a diffuse disk at best or just a general fog if the radiation is 

isotrop. In contrast to this expectation, the exposures shown in Figures 

III-13 through III-17 show a distinct structure. There is, indeed, a 

central blob which could be caused by a collimated beam in Figure 111-13. 

The exposures are--as can be seen-- reproducible only to some degree, 

they vary in intensity and location. Also'the streaks intersecting the 

crescent in Figure III-15 vary from exposure to exposure. The small 

crescent of Figure III-14 may correspond to the most heavily exposed por- 

tion of the blob of Figure III-13. The fact that there are two crescents 

on Figure III-16 is understandable, since these are long range exposures 

(usually 8 hrs.) and the discharge may have been turned off once and re- 

started or the pressure may have changed. This may cause the beam to 

deviate somewhat and so cause the double exposure. 

--- 



Figure III...12 X-ray from electrode region. 0;' EIJRAD device. 
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Figure 111-13. End-on X-ray output from RF Discharge. 
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Fig. 111-14. End-on X-ray Output from RF Discharse. 
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Fiq. 111-15. End-on X-ray Output from RF-Discharae 
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Fig. 111-16. End-on X-ray Output of RF Discharge. 
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The fact that the exposures are not in the center of the figure indicate 

that the beam does not come out straight but is (unpredictably) deviated 

to begin with. 

Whatever the case may be , if the exposures shown in Figures III-13 

through III-17 are caused by x-rays, these x-rays must be emitted in a 

preferential direction. 

An attempt to measure the intensity of suspected x-ray emission was 

made. A Victoreen model 440 RF/A survey meter was placed next to one 

of the electrodes. The 440 RF/A is a highly sensitive ionization chamber 

with a broad energy response from 12 keV to 1.2 MeV. It is designed to 

perform x-ray dose rate measurements in high RF-fields. It is suited for 

soft x-rays, however, its response time is under these conditions as 

long as 12 seconds. Reproducible readings in the range of 1 mR/h to 3 

rnwh were obtained. However, the long response time does not allow any 

cross correlation with actual operation parameters. 

Also TLD chips were placed next to the tube. These chips were ex- 

posed for three hours and then counted and compared with control chips 

that had not been exposed. The conclusion was that the chips must have 

been exposed to a radiation field of 3.3 mR/h. 

Also, an attempt was made to observe the x-ray pulses individually. 

For this reason a NaI-scintillation detector was placed close to one 

electrode. The output was displayed on an oscilloscope, and is shown 

in Figure 111-18. Since the x-ray pulses come randomly, the camera 

shutter had to remain open for several seconds. During this time the dis- 

charge went through several million cycles. Power lines insidetthe RF- 

shielded building) picked up the radiowaves and leaked it into the oscillo- 

scope. However, the discharge is very repeatable. E.g., the traces in 

Figure II-13 are also second long exposures , which means also several 
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Fig. 111-18. Individual X-ray puses. 
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million repetitions. Therefore, the traces coming from electrical inter- 

ference can be seen as a band at the lower part of Figure 111-18. The 

individual x-ray pulses are seen in the upper part of the picture. 

2. Spectroscopic Studies 

a. Experimental Arrangement 

The system used for study of optical emission coming from the plasma 

is shown in Figure 111-19. It consists of a 1 m Czerny-Turner grating 

spectrograph/spectrometer and an optical imaging system. .For spectro- 

meter operation, the scanning of the grating is accomplished by a stepping 

motor. Photoelectric registration is accomplished by an EM1 8575 photo- 

multiplier tube and a picoammeter. The particular Czerny-Turner mount 

used is convertible to photographic registration by rotation of an auxili- 

ary mirror into the spectrograph position. 

The Czerny-Turner mount is equipped with a 1200 line/mm grating 

blazed for 40002 (1st order). Demonstrated resolving power for this in- 

strument is better than O.lg at 4OOOF1 using 1st order. 

The slit width used to achieve this resolution is 16 urn. For reasons 

of speed of observation in the studies described in the following, larger 

slit widths were used for photoelectric registration (up to 50 pm). 

Slit illumination was accomplished with a 1:l imaging system, placing 

the image of the plasma into the entrance slit plane allowing spatial 

resolution of the observed plasma structures. 

b. Survey Spectra 

Figure III-20a shows a photographic spectrum of the emission of the 

ENRAD device operating in hydrogen. The drive frequency was 1.35 MHz and 

the pressure was 0.6 torr. Since a slit width of 25 1Jm was used a long 

exposure time was required (6 hrs.). 
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Figure III-20b shows the spectrum of the emission of the ENRAD device 

operating in deuterium under the same condition. Both spectra were taken 

using side-on observation. They show expected features like the Ha,HB and 

HY lines in the hydrogen discharge. DC1, DB and DY can be seen in the 

deuterium case. In addition, features resulting from the emission of the- 

hydrogen molecule are very prominent. 

The Stark broadening of the hydrogen lines is very moderate. Based on 
. . 

the observed half widths, the electron density has to be less than lOiL 

electrons/cm3. From this, it has to be concluded that even at the relatively 

low gas pressure under which the discharge is operated, the plasma is only 

partially ionized. This conclusion is corroborated by the presence of sub- 

stantial H -emission. 2 
Usually in fully ionized hydrogen plasmas, molecular 

bands are weak or non-existent. For comparison, a spectrum of a hydrogen 

d-c arc is shown. (Figure 111-21) This arc was operating at about 15 000°K 

which means it was almost fully ionized. There are no molecular bands 

visible and the Stark broadening of hydrogen lines is very prominent. 

As pointed out before in the ENRAD device, electron formation takes 

place in the volume rather than in the vicinity of an electrode as is the 

case at discharges having internal electrodes. These latter discharges 

develop cathode and anode fall regions, which are vital for the maintenance 

of the discharge. In the cathode fall region acceleration of the electrons 

leaving the cathode takes place, requiring large electric fields (the major 

portion of the applied voltage is dropped across the cathode fall region). 

These fields are partially balanced by an electron cloud adjacent to the 

cathode fall region - the space charge. Here a high electron density and 

consequently considerable Stark broadening can be expected, while in the 

positive column, the electron density is moderate. 



Figure I,II-20a. Hydrogen Spectra from ENRAD device. 



Figure III-21 Hydrogen D.C. arc at 15000 K 
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Figure III-22 is a spectrum of such a discharge. In the proximity 

of the electrodes, some of the spectrum lines (those which are subject to 

Stark broadening) are severely broadened, while only moderate broadening 

is observed in the plasma columns (the center portion of the lines). The 

two sample spectra of internal electrode discharges have to be compared 

to spectra obtained from the ENRAU device. The comparison shows that over 

the spatial region covered, there are no electron density gradients, 

especially no fall regions, a fact which was already mentioned as one of the 

advantages of a FU? discharge with external electrodes. 

C. Intensity Evaluation --- 

The information contained in spectral emission rests in intensity, 

wavelength and line width. The latter two were discussed above to some 

extent. 

The intensity of a spectrum line is given by 

I =An* hv (111.1) 

where A is the transition probability, hv is the photon energy and n* is 

the number of atoms which are excited into the upper level of the line of 

interest. 

If equilibrium exists or is at least locally approximated (local 

thermodynamic equilibrium, LTE) the quantity n* can be computed using the 

Boltzmann factor: 
E 

X 

I=n hvze -kT 
0 

, n =G 
0 

(111.2) 

where n 
0 

is the total particle density (p: pressure) g is the statistical 

weight (degeneracy); U is the partition function, Ex is the excitation 

energyl and kT is the thermal energy. 
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If the relationship for the 

I=Ahfno 

intensity of a spectrum line 

E 
X 

p e -kT 
U (111.3) 

is rewritten in logarithmic form 

In Ix = In 
hcno Ex 
--- 

gA U kT 
(111.4) 

Using this relationship, one can relate the observable intensity to the 

excitation energy in a straight-forward way. If the factor k, where 

the intensity is the only quantity which needs to be measured, is plotted 

on a logarithmic scale versus the excitation energy, a straight line with 

the slope - h should be obtained. Such a plot is usually referred to as 

a "Poltzmann Plot." 

Any deviation from the straight line indicates deviation from a Maxwell 

Poltzrrann distribution of states (which is the prerequisite for the valid- 

ity of the Boltzmann factor). A point laying above the line suggests an 

overpopulation of the particular state, while a point laying below the line 

suggests underpopulation of this state. 

A resonance phenomenon is a non-random event. Therefore, one would 

expect that for a resonating laser cavity, at least the point belonging 

to the upper laser level would not fall on the straight line. The same 

has to be true for the ENPAD device if it is truly a resonance machine. 

For this reason, two Doltsmann plots have been taken. One was taken under 

conditions where the %NRAD device was operated like an ordinary RF dis- 

charge, showing no particular plasma structure.' The resulting Boltzmann 

plot is shown in Figure 111-23. The deviation of the points from the 

3400°K line are probably within the error of measurement. The conclusion 

is that the plasma is more or less in LTE at a moderate temperature of 
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Figure III-23 Boltzmann Plot of the Hydrogen Ha, HB, Hvs and H6 Lines 



61 

3409°K. This temperature will produce only a small thermal ionization 

of the plasma, which is consistent with previous conclusions. 

However, if the ENEAD device is operated in resonance conditions, 

where x-ray and neutron emissions are observed, the Boltzmann plot is 

changed drastically. Figure III-24 shows such a Boltzmann plot for the 

deuterium case. A substantial deviation from LTE can be seen. In order 

to appreciate the magnitude of the deviation, it is convenient to super- 

impose Figure III-23 and Figure 111-24. To be able to do this properly, 

one should appreciate that the intensities usually used for Boltzmann 

plots are relative intensities. A closer examination of equation III-4 

shows that only relative intensities are required. Therefore, the inter- 

cept of the straight line with the ordinate (zero excitation energy or 

ground state population) is only correct within a constant factor which 

is different for each gas. Therefore, in order to superimpose both figures, 

one of them has to be moved parallel to the ordinate until one point of 

one figure matches the corresponding point on the other. In case of 

Figure 111-25, the point for DY (5) were matched. As can be seen from 

this figure, the deviations are large, covering several orders of magni- 

tude. Although the decision to match the point for Dy(Hy) is arbitrary; 

there is a good argument for why they should be matched in contrast to 

the points Hc(Dc). The slope of a line drawn from DY to DB is roughly 

the same as the slope of the Boltzmann Plot for H2 under non-resonant 

conditions. (Figure 111-23). It is reasonable to assume that both con- 

ditions produce about the same electron temperatures (for such electrons 

which are thermalized). Therefore, the conclusion drawn from Figure III-25 

is that Dc is heavily underpopulated when the device is operated with 

I - 
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cavitons established. If one assumes that the walls of the cavitons 

are formed by ions interacting with the RF field,.the observed radiation 

has to come from excited atoms, which are freshly recombined ions. Since 

the cross sections for recombination into higher laying states are larger 

than into lower laying states, it is understandable that the higher laying 

D 
B 

and DY upper line levels are thermalized before the upper Dc-line level, 

which explains why this level is underpopulated. 

d. Doppler Shifts 

If the ENEAD device indeed produces directed ion velocities--namely 

a beam impinging on the caviton walls --this fact should be detectable by 

measurements using the Doppler effect. However, if the high ion velocity 

is random (temperature), a Doppler broadening of the Balmer lines should 

be detectable. If the beam should exhibit some spread in energy without 

being randomized in direction (or only randomized to a small degree), a 

broadened Doppler shifted line is expected. 

To demonstrate an existing Doppler shift side-on and end-on light was 

superimposed on the spectroscopic plate, without moving the peak between 

exposures. The optical arrangement for doing this can be seen in Figure 

111-19. A blue shift for the end-on radiation is clearly visible in the 

photographic spectrum depicted in Figure 111-26. The size of the shift 

is about 18, which translates into 40 eV directed motion. 

The end-on observation spectrum shows also a feature at a part of 

the D 
B 

line which corresponds to the part of the plasma which is in the 

vicinity of the wall. This feature is an additional broadening, which 

is shaded towards the blue. However, the information available does not 

allow a distinction whether this feature is an additional Doppler shift or 

a Stark broadening. 
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3. Neutron Emission 

In the following we will show that the ENBAD device emits neutrons 

when operated in deuterium and when cavitons are present. 

The results presented here were obtained under this effort only. 

Since the neutron emission is quite unexpected for such a low voltage dis- 

charge, we felt it was necessary to have the neutron emission verified 

by a researcher not involved in this project. This independent measurement 

was done by Dr. William H. Ellis, University of Florida, and is reported 

in Appendix A. 

Figure III-27 shows the system used to study the emission of neutrons 

from the deuterium plasma structures. The detector is a BF 3 tube operating 

in the proportional counting mode. The tube and associated electronics 

are RF shielded and extensive tests were performed to guarantee that the 

RF interference did not influence the counter system. The system was then 

calibrated so that an exposure of 3.6 x lo6 * 20% neutrons would result 

in 2000 counts or 1800 f 350 neutrons per count. The same moderator was 

used for calibration and all tests. 

The system was filled to 300 torr of deuterium and pumped down to 

50 microns within 10 minutes. During the 10 minute cycle, the neutron 

detector was turned on and counts were accumulated. 

-Table III-1 gives the results of the various runs with the neutron 

counting system. With D2 gas, statistically valid results show that 

neutrons are being produced by the plasma. These neutrons are expected 

to result from the 

lD2 + lD2 -t He3 + 1 E He' 820 keV 

2 On 
En: 2450 keV 

nuclear reaction. 
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Figure III-27 System for the study of neutrons from ENFCAD device. 
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TABLE III-1 

Gas counts Net Counts 

D2 with moderator 

D2 w/o moderator 

H2 with moderator 

H2 w/o moderator 

*Air with & w/o moderator 

*Evacuated Tube with & w/o 
moderator 

Background 

115.20 17.25 78.45 20.03 

37.67 7.23 

42.50 4.95 5.75 15.73** 

30.00 3.87 

40.5 

33.0 

36.75 10.78 

*Average of * items) 

**Not statistically valid 
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Neutron emission from the ENBAB is low. Therefore, to verify that 

the detection system was not influenced by RF interference, an alterna- 

tive technique of neutron detection, namely neutron activation, was per- 

formed. 

A gold coin enclosed in a paraffin moderator was irradiated for 24 

hours. The pd (pressure x interelectrode distance) was such that 6 pair 

of disks were formed. The gold coin was counted immediately after irradi- 

ation. The result was a corrected count rate of 80 CPM. Figure III-28 

shows the decay curve for the foil. The slope of the decay curve computed 

to be a half-life of 2.7 days which is the half-life of gold. This in- 

dicated the BF3 neutron counter was functioning correctly. 

The emission of neutrons by the ENRAD device has several parameters 

which were measured. The first parameter measured was the neutron count 

vs frequency. Figure III-29 shows a plot of the data for frequencies be- 

tween 1.20 and 1.45 megahertz. The pressure (with a constant d) varied 

during the taking of the data. It varied from a high value sufficient 

to produce a diffused discharge to a low value capable of producing the 

degenerated disk discharge within 15 minutes. The data does not indicate 

that the shape of the fitted curve needs to be a straight line, but may 

be a resonance shape with a peak about 1.34 megahertz. 

Another parameter measured was the location of the maximum neutron 

emission. The results indicate that the location for maximum neutron 

emission spreads from around the mid-point in the discharge to the grounded 

electrode. The rotational position about the ENBAD axis had a homogeneous 

neutron emission. 

The last parameter measured was the amount of neutron emission vs 

percent nitrogen admixture. It was found that -5% nitrogen admixture to 

the deuterium increased the neutron output without destroying the plasmoid 
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disks. Figure III-30 shows a plot of this data. As the admixture went to 

zero, the neutron count rate stabilized at approximately 300 CPM. 

The admixture altered the stability of the plasmoid disks. An in- 

stability manifested by flickering between n and n + 1 disk pairs was ob- 

served. With an admixture of nitrogen, the flickering between n and n + 1 

disks could be maintained for several seconds. This is not to say that 

during the instabilities the neutron output increased, since the neutron 

counting system does not resolve short times (the order of seconds). How- 

ever, these results could be an indication that the neutrons are genera- 

ted by instabilities. 
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Fig. 111-30. Neutron Count Rate vs Percent Nitrogen Admixture 



Iv. EXPERfMEXTAli OBSERVATIONS OF CAVITONS 

1. Probe Measurements 

Cavitons have been observed before by others at lower pressures. 

In reference IV-1 the time averaged charge densities around such cavitons 

are reported. These measurements are made with an ion beam probe. Al- 

though the RF discharge used in reference IV-1 had electrodes, while ours 

is electrodeless, certain similarities exist, e.g., they also report 

observation of a dark sheath. Figure IV-1 shows some of their results. 

The striking feature is the charge walls surrounding the cavitons. 

We like to compare these (very sophisticated) measurements to some 

old measurements of our own made with a Langmuir probe (Figure IV-2 and 

IV-3).' The Langmuir probe disturbs the plasma to some extent. Also, the 

interpretation of the probe data assumes a Maxwellian electron distri- 

bution. For these reasons our probe measurements have to be regarded 

as somewhat crude and they are only'reported here because of their simi- 

larities with the measurements in reference IV-l. 

Figure IV-2 shows the results for 1.5 x 10 -2 torr. At this pressure 

only degenerated cavitons (see also Figure 11-11) exist. The electrode 

to which those cavitons attach is located at 12 cm. An indication of a 

surrounding charge wall is visible. The electrons in this wall region 

cannot be expected to have a Maxwellian velocity distribution, since they 

are accelerated towards the wall. The Langmuir probe evaluation process, 

therefore, overestimates their temperature. 

Figure IV-3 shows the results for 6 x 10 -1 torr. The electron density 

shows now a minimum in the center and moderate walls towards the electrode. 

Results in Figure IV-2 (l-5 x 10 -2 
torr) have to be compared with the 

1.0 x l.-4 curve in Figure IV-1 and the result in Figure IV-3 (6 x 10 -1 torr) 
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have to be compared with the 3 x 10 
-4 

torr curve in Figure IV-l. Ob- 

viously, the Langmuir probe measurements cannot bring out the steep walls 

of the caviton as good as the ion probe does, but the indications are 

there. 

The conclusion to be drawn from these measurements is that the cavi- 

ton is surrounded by steep charge density gradients caused by "digging in" 

of the applied RF field. In our discharge the cavitons are actually 

visible. The structure seen must consist of excited atoms, which form a 

density wall around a dark space in which at least no excited atoms exist. 

The ions and electron are, of course, not visible but the probe measure- 

ment indicates existence of similar density walls as the visible ones. 

The Langmuir probe measurements do not have sufficient spatial resolution 

to prove that both kind of walls are located at the same distance from the 

electrodes. Geometry and pressure of the discharge of reference IV-l are 

too different for allowing quantitative comparison. 

2. Collimated ~-Rays 

The original goal of the effort was to show existence of coherent 

x-rays. We have shown evidence of emission of x-rays in a preferential 

direction. However, this does not necessarily mean these x-rays are 

coherent. 

In the following an attempt is made to explain the mechanism of 

generation of collimated x-rays for the case of the degenerated cavitons. 

Both devices--the high voltage pulsed dc discharge and the low vol- 

tage FU? discharge--produced at least collimated x-rays. This in indicated 

by the result shown in Figures III-3 and III-13 through 111-16. 

Since Figure III-3 is always reproducible, while Figure III-13 through 

III-15 show a wide spread in phenomena, the discussion on collimated 

__^_ -..-- _ - .- ___. 
:. ~. .- . . 1 
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x-rays is limited to the pulsed dc device in the following. 

It is claimed that Figure III-3 could only be obtained by exposure 

to an x-ray source which emits in a preferential direction. 

Figure III-3 was obtained by wrapping an x-ray film around the dis- 

charge tube. It is now first attempted to explain the obtained exposure 

by x-rays generated by impact of electrons on the glass tube. Referring 

to Figure IV-4, assume that the electric field has a configuration which 

forces the free electrons to impact on an area of the glass tube adjacent 

to the negative electrode. Assume further that the field has an infinitely 

steep gradient toward the right side of the impact point "A," which means 

no electrons impacting at the right side of point A and many electrons are 

impacting on the left side of point A. 

In this case, point A can be considered as a point source for isotropic 

x-ray bremsstrahlung. (Only if the impact energies were in the MeV range 

non-isotropic radiation could be expected.) The darkening of the x-ray 

film, at the right side of point A, is of interest. 

Neglecting scattering for the moment and dealing only with absorption 

in the glass tube, the intensity of the bremsstrahlung at point x = 0 

on the x-ray film is 

I = Ioeekd 

where I 
0 

is the intensity emitted at point A, while k is the absorption 

coefficient of the glass and d is the thickness of the glass wall. 

The intensity of the x-ray exposing the film at the right side of 

point A (x>O) is given as a function of x by 



80 

‘x-ray Film 

x-ray Film 
I 

Fig. IV-4. Bremsstrahlung from Impact on Glass Wall. 
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The sensitivity of the photographic material (in the "straight" portion 

of the sensitivity curve) is logarithmically related to the energy expos- 

ing the film. 

Therefore, the ratio between number of exposed grains (density) on 

the left side to the number of those on the right side is at best 

-k (x+d) J' 
0 

which is a linear dependence and not at all the steep density gradient 

which is observed. Scattering in the glass was neglected, as well as 

the fact that the points left of point A are also isotropic x-ray sources 

and will add to the exposure of the x-ray film at the right side of point 

A. This will even further reduce the expected density gradient on the 

film. 

The conclusion is that the exposure shown in Figure III-3 cannot 

possibly be caused by bremsstrahlung generated by impact of electrons on 

the glass wall. 

However, the figure can be explained at least qualitatively by the 

assumption that a "degenerated caviton" existed under the conditions at 

which the exposure was obtained. Figure IV-5 shows a number of such de- 

generated cavitons for the RF discharge, where they are visible. This 

figure has to be compared to Figure IV-6 (a repetition of 111-I) which is an 

x-ray exposure. By comparing these two figures, it is readily seen that 

such degenerated cavitons must be responsible for the observed collimated 

x-ray radiation. 

A possible mechanism could be bremsstrahlung (or cyclotron radiation) 

which is caused by electrons vibrating back and forth across the boundary 

line of the caviton. In order to produce x-rays under such conditions, 
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Fig. IV-5. Visible Degenerated Cavitons. 



Figrue IV-6 Three dimensional sketch of X-ray pattern around the tube. 
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we would have to assume very strong field gradients at these boundaries. 

But, if such strong gradients exist, the generated x-rays would have to be 

collimated and even coherent to some extent, since all participating elec- 

trons are vibrating parallel to each other. 



V. DESCRIPTION OF THE STATIONARY DISK-SHAPED ENRAD 
RESONANCE-PATTERNS IN TERMS OF CAVITONS 

1. Derivation of the Fundamental Nonlinear Equation .-.-___ 

In order to analyze the developed caviton, its stationary states, and 

their stability, we start from a set of three equations: 

a6n 
--$ + V[(no + 6no)Gel = 0 

av T 
(n 0 + dno) $ + (no + 6no) i% + $ V6n, = 0 

(1.1) 

(1.2) 

v.8 = - 47re 6ne (l-3) 

Here we have divided the electron concentration m into three components 

n=n + 6no + dn , (1.4) 
0 e 

where n o is the average concentration of electrons balanced by the average 

ionic concentration in the discharge tube, 6no is a very slow fluctuation, -- 

neutralized by an identical fluctuation in the ionic concentration (also in- 

cluding a large time-independent part defining the caviton), and 6ne is the 

fast fluctuation which cannot be followed by the ions. We have considered 

both 6ne and the velocity G, of the electrons small and we have neglected 

terms quadratic in them. The first equation is the equation of continuity 

for the fast (jitter) motion, the second is the equation of motion expressing 

the momentum balance, with a field (drift) term and a pressure (diffusion) 

term included in addition to the linearized inertial term (Te in energy 

units). Equation 1.3 is Poisson's equation. We neglect Xn/at, i.e., 

consider bn time-independent. 

We take the divergence of equation 1.2 and subtract the time-derivative 

of equation 1.1: 

85 
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_ a26n T 
e 

at2 
+ zV* 1 (no + fin)%] + 2 V26n = 0 

e 

Using equation 1.3 we obtain: 

a2t 

[ 

4re2 
T 

v*-+- 
at2 m 

(no + 6n) S - $ V(V.8) 

I 

= 0 

(1.5) 

(1.6) 

A solenoidal part of the rectangular bracket does not make sense physically 

in our case. Neither does a harmonic potential part. Therefore we are 

looking for a solution satisfying the equation: 

a2E 4ne2 T 
-+ 
at2 m tno + 6n) Z - 2 V(VmiS) = 0 

We separate out the fast part of the variation in E(t): 

E' = $ g(t)e-jwPt + C.C., 

(1.7) 

where Eo(t) is a slowly varying amplitude with a negligible second deriva- 

tive implied, and C.C. is the complex conjugate of the preceding term. The 

average ponderomotive force of the electric field 3(t) on the plasma of elec- 

trons and ions can be described by an average potential energyr (see also 

section 7). 

U=e2E I I 0 
(1.9) 

where the average <> is a time average. Denoting by Ti and Te the ionic 

'and electronic temperatures in energy units, we expect a Boltzmann distri- 

bution of the plasma density 

n + 6n = n .-U/(Ti + Tel 

0 0 
(1.10) 

It is convenient to introduce the dimensionless field amplitude 

A B ego/[2&n(Ti + T,)]. We obtain 
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+ 
2iU aA 

P at 
e 

The electron plasma frequency W = (4'rme2/m) w 
P 

and the Debye length 

ED = dTe/(471ne2) define the dimensionless variables T Z wpt/2 and p = r/ED. 

This yields the fundamental equation 

i 2 + V,(V,*A) + (1 - e -IAl 2 ,st = 0 

the stationary (steady state) solutions of this equation will be analyzed 

in the next section. 

This equation is known as the nonlinear Schrodinger equation, which 

describes both the temporal evaluation and the stationary states of normal- 

ized field amplitude A. 

As we shall see in the next section, Equation 1.12 admits stationary 

localized solutions similar to bound stated encountered in quantum mechanics. 

We will call these stationary localized states of the electric field "cavi- 

tons." 

2. Stationary Solutions of the Fundamental Equation: Cavitons as Dynamic ~.. -.-_____ ~_ _ 
Equilibrium Configurations 

Consider first the one-dimensional case 

aA a2A i at + v + (l-e -I Al 2 )A=O. (2.1) 

This equation admits stationary solutions in which the dynamic pressure of 

the trapped electromagnetic field is balanced by a variation of the electron 

thermal pressure. These solutions, known as cavitons, are a special case of 

solitons, and have the form 

A(z,T) = u(S)e 
ikz + iw'C , c=z - 2kT. (2.2) 
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Equation 2.1 becomes now 

2 
dl.l + (1 - e- 

2 

dS2 
- w) 1-1 = 0; w = w + k2. (2.3) 

For the case of the small-amplitude (~~01) Langmuir soliton (caviton) , we 

expand the exponential in series. We obtain in lowest order an equation 

studied by Zaharov', which presents a cubic nonlinearity 

d21J 2 + L13 = WV. 
d< 

This equation admits an exact solution 

P(6) = C sech (lcl</Jz); w = Icj2/2, 

(2.4) 

(2.5) 

where C is an arbitrary complex constant. Indeed, equation 2.4 is satis- 

fied if we substitute this "soliton" solution. Note that for any value of 

w in equation 2.3 or 2.4 only one solution is possible with the form seen 

in Figure 2.1. As we shall see, the situation is different, and more 

interesting in three dimensions, where the spherically symmetric solutions 

which are regular (finite) in the origin constitute a .discrete set, with 

quantized radial slopes of the allowed solutions at r = o. Spatial depend- 

ence of the normalized field amplitude of the one-dimensional caviton. The 

dotted line is the low amplitude limit C sech (Cc/fi. The full line is 

obtained by numerical integration with the use of the Runge-Kutta proce- 

dure. Spatial variation of the plasma density for 1~1~ = 2 in Figure 2.1. 

The spatial dependence of the plasma density in the one-dimensional cavi- 

ton is calculatedL in stationary conditions by using equation 1.10. The 

results are plotted in Figure 2.2 for the large-amplitude caviton with 

1~1~ = 2 whose field is represented in Figure 2.1. Note that only 13.5% 

of the plasma density is left in the center of the caviton. For higher 

amplitude solutions this percentage will further decrease exponentially, 
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Figure 2.1 Spatial dependence of the normalized field amplitude 
of the one-dimensional caviton. The dotted line is the 
low amplitude limit C sech (Cc/r). The full line is 
obtained by numberical integration with the use of the 
Runge-Kutta procedure. 
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Figure 2.2 Spatial variation of the plasma density for I C I2 = 2 in 
Figure 2.31 
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according the equation 1.10 and 1.9, until a good vacuum is left in the 

caviton. 

We consider now the three-dimensional, spherically symmetric Langmuir 

caviton. Equation 1.12 becomes 

- 2 A + (l-e-IA12) A = 0 

With the boundary conditions: A bounded for P= 0 and A+0 forP+OD, one 

obtains a discrete set of solutions with n = 1,2,3... modes or zeros of 

A between p= 0 andP=OO. 

The result of a numerical calculation' for the fundamental mode and 

the first "excited" mode are represented in Figure 2.3. The electric field 

points in the radial direction but vanishes in the origin and, for the case 

of nonfundamental caviton states,also on the nodal spheres. 

For pt" the solution in Figure 2.3 decreases like spherical Bessel 

functions of order unity. The characteristic length of the high-field 

region is 

L = R, Up/" = (1 
41rnoe2 l/2 

4Trnoe2 
1 u-1 = 

m z/u. 

This means that the size of the caviton is independent of the surrounding 

plasma density no. For the electrons T.; 2000°K~1.38.10 -16 erg = 2.76 10 -13 

erg = 0.1725eV and with m = 0.9.10 -27 
g we obtain 1.75.107cm/s w . -1 This 

yields L = zcm for a frequency of 1.34 MHz which corresponds to the largest 

neutron output of ENBAB. The observed width. of the dark space in ENBAD 

is approximately 1 cm, i.e., of the same order of magnitude as a Langmuir 

caviton. 

The antinodal regions in Figure 2.3 correspond to spherical plasma- 

depletion layers similar.to Figure 2.2, and the nodal spheres contain the 
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Figure 2.3 The normalized electric field (a/2) 112 E versus p = tir/WoXD, 

of the ground state and first excited electrostatic mode 
with spherical symmetry and with w2/,E = $ . The electric 

field is radial. 
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normal plasma concentration n 
0’ 

The similarity of spherical Langmuir soli- 

ton states to electronic states in atoms is particularly interesting. 

The normalized electric field (B/i)1'2E vs. p= wr/wpkD, of the ground state 

and first excited electrostatic mode with spherical symmetry, and with 

2 2 
3 /a 

P 
= l/2. The electric field is radial; fi2 = e2/k7rm e 2(Te + Ti). 
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3. Electromagnetic Field Configuration and Plasma Generation in ENRAD 

At the ENRAD operating frequencies of O-5-1.7 MHz, the vacuum elec- 

tromagnetic wavelength is 600m-176m. The distance between the ENRAD 

electrodes is between 5 and 50 cm, which is much smaller. Therefore, we 

can approximate the electric field configuration between the electrodes 

with a statis electric field. 

Let the axis of the discharge tube be the z axis and the axial point 

0, equidistant to the electrodes, be the origin of a system of rectangular 

(x,y,x) and cylindrical (r,e,z) coordinates as shown in Figure 3.1. 

First we obtain the electric field E in the vicinity of the origin 0 

in the median plane z = 0 by summing the contributions of corresponding 

elements of arc dl' and dl" on the circumberence of the two electrodes of 

radius a = 10 cm, carrying a charge U per unit length. 

dR 

(r' +r -2f.YJ.')3'2 -+ 2 +2 

+2 
SC aOR a2r2cos29 

(a2+R2/4)3'2 3 (a2+R2/4)2 

E’ = - 2naaZ [ 2 

ta2+R2,413/2 ' 
+ pr2 1 

a2+R2/4 ;p! 
3.75a 3 -- 
a2+R2/4 2 

Here we have used the equality [Z-'-r'1 I3 = IX1*j3 valid for G in the median 

++ 
plane, and r'-r" = 2 The coefficient d can be calculated for the distances 

5 cm < R < 50 cm used in ENRAD. We obtain 

R I 5cm ag = 24.5 cm 50 cm 

P I 2.03 0 -0.983 

Consequently, the field distribution in the median plane z = 0 is charac- 

terized by a maximum in the origin for R > ag = 24.5 cm and by the pres- 
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Figure 3.1 Calculation of ENRAD Electric Field. 
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a = 10 cm 

E= 

( 
--N 

\. 
I \ 

\ \ 

\ 

> 

I 

-* const, 
/ 

I' 
) 

\ 0' -A 

E = const 

1 R < a&- p>O case 

R = a6 = 24.5 cm 
p = 0 case 

p<O case 

Figure 3.2 Geometrical locus of maximal elective field points in 
cross-sectional planes perpendicular to the axis of the 
ENRAD-device. 
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ence of a maximal circle with a minimum in the center 0 for R> a&. 

For R = a& the field maximum in 0 is flat and of higher order, since all 

second derivatives of the field vanish. 

The dependence of E(r,z) 

radial field component can be 

by performing a more complete 

or by using VXF. = 0 and V-E = 

to second order, 

on the cylindrical coordinate z and the 

determined in the vicinity of the origin 

expansion of the first form in equation 3.1 

0 with equation 3.3. Both methods yield, 

I- 1 11 

rL-2zL E =- 27iacSR 
z (a2+R2/4)3'2 1 

l+P2 2 a +R /4 I 

4ITacR E =- 
r (a2+R2/4)5'2 

P-z 

In three dimensions, the maximum observed in 0 for R > a& turns out to 

be a saddle point, both for E and for z2. The same holds true for the z 

minimum observed in 0 on the z = 0 plane. 

The main features of the whole field configuration are represented 

qualitatively in axial cross section on Figure 3.2 for the three cases 

considered. The maximal-field points obtained in any plane z = const 

generate a surface in three dimensional space. The cross section of this 

surface is represented in Figure 3.2 by full lines, and the median 

IE'I= ~~~~~~~~~ = const. surfaces are dotted. The arrows indicate the di- 

rection in which I!61 increases on these lines which are the geometrical 

locus of the points of maximal electric field lines. For R a& the locus 

of the maximal-field points is a cylindrically symmetric surface which 

resembles a rotational hyperboloid with one sheet. For R = a& the neck 

width of the rotational surface becomes zero and for R a6the locus consists 

of two distinct funnel-shaped surfaces connected by a line on their axis. 
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From the shape of the I;] = max and I;/ = const surfaces, we note 

that in the center of the ENRAD device there is an extended, quasi-homo- 

geneous high-field region, separated from wall and electrode surfaces 

which are well known plasma recombination regions. Therefore, after the 

application of the high-frequency field in ENRAD, the highest plasma 

density is expected in the median (z = 0) plane. 

The plasma frequency W = (4'rrne2/m) l/2 
P 

increases together with the 

electron concentration n in every point after the high frequency field 

has been applied and after the first breakdown has occurred. In the 

process of plasma build-up, the increasing plasma frequency values 

up(n) will first approach the value W o of the applied field in some point 

P on the median plane z = 0. As soon as W approaches W the dielectric 
P 0 

constant of the plasma vanishes and since EE = con&, the electric field 

in the point P is enhanced (mathematically it approaches infinity). 

At this moment, a resonance between the electromagnetic wave and the 

electrostatic plasma oscillations characterized by W occurs in the vicin- 
P 

ity of the point P. As we shall see in the next section, this resonance 

leads to a dramatic enhancement of the electric field in the vicinity of 

P and to the process of linear conversion of electromagnetic waves into 

electrostatic (Langmuir) waves. 

4. Electrostatic Resonance, Linear Conversion from Electromagnetic to 
Electrostatic Waves in ENRAD, and the Development of localized Fields 

In order to better understand the resonance process at the point P 

defined in the previous section, in which W 
P 

first approaches W, we first 

review the elementary derivation of the electromagnetic wave dispersion 

relation and plasma dielectric constant. By applying the curl and a time 

derivative, respectively, to the two Maxwell equations 
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(4.1) 

(4.2) 

we eliminate the Vx aB/at term and obtain 

2 
vx (VxZ) z-1 2.2 _ 4lT af 

c2 at 2 at 

Taking 3 = neg and using the equation of motion 

we obtain with & = 0 

-$E’=-L& _ 47me2 

c2 at2 
; 

2 mc 

Substituting E = Eoe i& r' - f&t) we obtain the dispersion relation 

iA2 = iso2 + c2k2 
P 

and the phase velocity 

2 a2 c2 = g2 
"ph = TI" = l-w2,w2 - E . 

P 

This identifies the index of refraction E l/2 and the dielectric 

constant of the plasma 

E = 1 - U2/U2. 
P 

Similar results obtained by replacing c1 with 3kT/m in equation 4.5 

and 4.7, holds for Langmuir waves (see Section 6). Consider the ENFWD 

discharge right after the high frequency field has been applied, when the 

density n of electrons (and ions) starts to increase and the plasma fre- 

quency in the z = 0 plane approaches the frequency U. of the applied field. 

Along the discharge tube we have roughly E' g zs 
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iT= EZ= const. 

The electric field configuration is close to a static configuration with 

the field lines directed along the axis, between the electrodes. Assuming 

that up approaches ~JI~ in a cross-sectional plane close to the median, we 

expect an enhancement of the electric field 

in this layer. 2 2 The enhancement factor is 1 - Up/U . This enhanced field 

will further increase the degree of ionization and consequently W will 
P 

reach the value w 
0’ 

Note that the energy density ED/8n is also increased 

in the resonance layer. Since the amplitude of D is constant, i.e., the 

same as outside the layer, the swelling in the energy density is propor- 

tional to that observed in the electric field amplitude. 

The increased electric field in the resonant layer will excite elec- 

trostatic (Langmuir) waves. Indeed, the enhanced field E' will accelerate 

electrons in the -E' direction, creating a compression region (accumulation) 

on the -E side of the resonant layer and a depletion region on the +$ side. 

Due to the electrostatic repulsion between the compressed electrons on the 

-E' side, and due to the pull of the uncompensated positive ions on the +$ 

side, the electrons will rebound after Tp/2 = 'F/W , i.e., after a half- 
P 

period of the Langmuir wave. Indeed, this electrostatic push-pull is the 

restoring force of the electrostatic waves in a plasma. Due to the equality 

w 
P 

= m. the applied electric field will have changed its direction from 

g to -E' in the same time. Therefore, the electrons will be accelerated 

again during their rebound. The enhanced electric field thus continuously 

builds up the plasma oscillations by acting on the electrons with the right 

phase at resonance. The electrostatic oscillation would increase 



101 

indefinitely in amplitude, like a lossless resonator, if there were 

no energy-loss processes and non-linear phenomena saturating the ampli- 

tude at some very high values, e.g., 2 or 3, orders of magnitude above 

the applied electric field amplitude level. Such processes are: 

A. Generation of Langmuir waves which propagate away from the 

resonant layer in both directions. The coupling of the electromagnetic 

field to these waves is given by the excitation of electrostatic waves 

by the enhanced electric field which is in the resonant layer, part both 

of the electromagnetic and electrostatic wave. This excitation, described 

in detail above is limited to the resonant layer, because the resonance 

condition w - o 
P 

o is only satisfied in this layer. The coupling is linear, 

and therefore we speak about linear conversion from EM to ES waves. The 

Electrostatic waves generated in this layer propagate down the plasma 

density gradient adjoining the layer in both axial directions, with in- 
w 

creasing group velocity v ges = Cse 11 - u; (zW21 , decreasing energy 

density by the same factor, 
-l/2 

and decreasing wavelength A = (2r/cse) 

, where c = (3kTe/me)1'2 is the effective electronic se 

sound velocity. The electromagnetic energy streams into the resonant 

layer along the field lines of the Poynting vector (c/47T)gxg at the speed 

of light and leaves the layer at the much lower speed v of the order of 
g 

the electronic thermal velocity, in form of Langmuir waves. Energy flux 

conservation requires then that the electrostatic energy density in the 

Langmuir wave must be larger than the electromagnetic energy density by 

the ratio of these speeds, i.e., 

V 2 21/2 
gem 

c(l-w /w 
P 

) 

V = c/c z 3.1010cm/s/3.107cm/s = lo3 
ws cse(l-~;/~2)1'2 se 

This energy enhancement is equivalent to an additional increase of the 

electric field amplitude by l$orders of magnitude, actually only a 
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2 2 -' factor factor of 10 in addition to the enhancement due to the (l-up/w ) . 

The physical reason for this increase in the energy density is the kinetic 

energy of the electrons in the Langmuir wave and the electrostatic energy 

of the charge density accumulations in the Langmuir wave, both contribut- 

ing equal amounts in average. The actual factor is reduced to 10 due to 

the competition of other energy loss process, listed below. 

B. Charged particle acceleration - to be discussed in detail in 

Section 8, leads to transit damping4: suprathermal electrons are accele- 

rated by passing through the resonant layer with the right phase. In 

addition, as we shall see in the next section, the ponderomotive force of 

the enhanced electric field acts on the plasma and digs a cavity leading 

to the creation of an electrostatic caviton. This large density pertur- 

bation corresponds to a localized ponderomotive potential (see section 7) 

which also contributes to the acceleration of electrons and ions observed 

experimentally in ENRAD. Fast electrons and ions carry out about equal 

amount of power, as we shall see. 

C. Resistive (ohmic) heating in the walls of the density cavity. 

D. Generation of ion-acoustic waves and of other oscillations of the 

plasma. These processes are based on the coupling between various resonant 

modes of the plasma. If two modes are involved, of frequencies 
1 and 2 

and wave numbers g 
1' and g 2' the relations w. = w1 + w2 and g = z + z 

12 

must be satisfied. 

The enhanced electric field present in the resonant layer initiates 

the linear conversion from EM to ES waves on a short time scale4 of the 

order of 10 periods of the electronic plasma frequency w 
P' 

determined 

essentially by the inertia of the electrons. The subsequent development 

of a density minimum in the resonant layer is about two orders of magni- 

tude slower, i.e., of the order of 10 periods of the ion plasma frequency 
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w 
pj 

= (4 nie2/mi)1'2, where n is the ion concentration and m their mass. 

5. Formation of Cavitons in the Nonlinear ENRAD Regime - 

The strongly enhanced electric field present in the resonant region 

with W =W 
P 

o exerts a ponderomotive force F z - V <E2>/87T per unit volume 

on the plasma,thereby creating a density cavity in the resonant layer. 

This density cavity is favorable to the further trapping of electromagnetic 

field, reducing the convective loss of electromagnetic and Langmuir wave 

energy. This trapping results in an even higher field inside the cavity, 

which in turn creates a deeper cavity. This process continues in a self- 

consistent way until saturation caused by nonlinear phenomena sets in. 

This final stationary state obtained this way is a combined nonlinear 

field and plasma state known as caviton, a particular case of solitons 

well known in many nonlinear physics problems. As we have seen in section 

2, the electric field inside the caviton is very similar to the quantum- 

mechanical wave function defined inside a potential well which corresponds 

to the density cavity in our case. The splitting of a single caviton 

with formation of two cavitons when the pressure is slowly raised in the 

ENRAD discharge is similar to the transition from the ground state to the 

first excited state of a sequence of energy levels in quantum mechanics. 

As we have seen on the example of the numerically calculated spherical 

caviton, this feature is obtained also theoretically on the basis of the 

nonlinear "Schrb'dinger" equation derived in section 1. The nonlinearity 

is due to the interaction of the field with the plasma. The n th excited 

state has n nodal spheres. 

In the case of the ENRAD device, the ground state corresponds to one 

dark space in the z = 0 plane bounded by a pair of luminous disks. The 

- 
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dark space is the high field region in the caviton and the two disks are 

the walls of the density cavity, made luminous by the excitation of atoms 

under the influence of mainly electronic bombardment and also ionic bom- 

bardment caused by the high electric field. In fact the luminous disks 

arise from the plasma distribution partially penetrating into the high 

field region and adjacent plasma sheets extending into the background 

gas as in Figure 5.1. In the high field region, inside the caviton, the 

concentration of exicted ions and neutral atoms is very low, and there- 

fore this region appears dark to the eye. 

The excited state of number n represents a sequence of n high-field 

regions in ENRAD, each of them limited by two luminous disks. 

Figure 5.1 is disk-shaped plasma cavitons obtained in the ENFAD 

device: a) distribution of the squared electric field amplitude; b) 

distribution of the total plasma and gas pressure, p = n,kT, + nikTi + 

n kT D D + nD+kTD + N 
2 2 

kTD 
D2 2 

; c) distribution of the light output in the 

blue and red spectrum areas, and the total luminosity; and d) distribu- 

tion of the total plasma concentration n = 1/2(ne+ni+nD+). 
2 
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Figure 5.1 Explanation of the Observed 
Color Distribution. 
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6. Derivation of the Electrostatic (Langmuir) Waves 

We have repeatedly used the concept of electrostatic waves and the 

expressions of their group velocity and phase vel.ocity in the present 

chapter. The plasma caviton comprises, in essence, a standing, localized 

wave of this kind. Therefore, we include here a brief derivation of elec- 

trostatic waves in plasmas, which may be skipped by the reader who is 

familiar with the subject. 

Starting with the generalized Ohm's law 

m aj 
-f 

-- 

ne2 at 
=$+zx$+LVp -1 :xs-nT 

en e (6.1) cne 

where 3 is the,current density and n is the resistivity, we take; = 

0, and consider small, fast, fluctuations of the electron pressure 

6P e =YkT,v&n=- 3eVp=-z vth2Vp, (6.2) 

2- 
where vth = 3 k Te/m, and the adiabatic coefficient y = (s/z + l)/(s/2) = 3. 

The number of degrees of freedom s has to be taken = 1 since the fluctuations 

are faster than the collision time and the motion is, therefore, adiabatic 

and one-dimensional. The fast fluctuation p of the electronic charge 

density satisfied the continuity equation for the fast fluctuations 

%+ V(& = 0 (6.3) 

allows us to eliminate 6: from the variation of Equation (6.1) by applying 

the divergence: 

a2P 2 
8,2 + "p ' - Vth 2v2p+v g = 0 (6.4) 

Here V is the frequency of collisions V = ne2/m, and w 2 
P 

= 4nne2/m is the 

squared plasma frequency. Note that Equation (6.4) differs from Equation 

(1.5) only by the additional presence of the dissipative collisional term 
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with V,. The corresponding dispersion relation for plane wave solutions 

substituted into Equation (6.4) is 

w2 2 =W 2 k2 
P + Vth - iuv (6.5) 

Therefore, if we neglect the small dissipative (damping) term are obtain 

the phase velocity 

vph2 (e ) = d 

2 2 
"P Vth 

k2 = 7 + vt; - ivph ;= lwp2/w2 - Vth 2/E, 

where E is the dielectric constant defined in Equation (4.8). The group 

velocity vc is given by 
d 

2 2 

vg(e 1 
Vth 2k 

= Vth 1 
w 

P + vth 
(6.7) 

Note that Equations (6.5)-(6-7) turn into the corresponding equations 

(4.6) and (4.7) applicable for electromagnetic waves, if we replace vth 

by ct the speed of light in vacuum. In particular, the group velocity of 

electomagnetic waves is 

vg(em) = c k = 
C2 

u2 

G-pi) = c l--5 =c& 
w 

(6.8) 

7. Derivation of the Ponderomtive Potential 

The concept of the ponderomotive potential used in the previous sec- 

tions arises in a natural way, if we consider separately the fast motion 

of the electrons at frequencies of the order of the plasma frequency, and 

the slow motion in which both electrons and ions participate. 

The high frequency (jitter) velocity of the electrons is given by 

the equation of motion 

-i& = 
e 

- (e/m)Z (7.1) 
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which produces an additional meansquare velocity 

2 <v >= (e/m) 2 <E2>. 
e (7.2) 

This corresponds to an additional pressure contribution peff 

2 

'eff 
= (l/2) nem<v 2> = (1/2)(nee2/mw2)<E2> = y (7.3) e 

In turn, this effective pressure causes a force -V peff per unit volume. 

If we divide by the concentration of electrons n, we obtain the average 

force per electron 

dVR 
-v 

e2<E2> <E2> _ 
mdt = 

-z-v-= -vu, 
2mw2 8 ne 

(7.4) 

where v 
0 

is the slow component of the electron (and ion) velocity in which 

the jitter has been averaged out. The form with n in the denominator is 

applicable in the case of a plasma caviton, for which W 
2 2 

=W 
P 

= 4anee2/m. 

The potential energy U from which the ponderomotive force can be derived 

is thus identical to equation (1.9) 

e2<E2> UG- = <E2> 
2mW2 5i-F' 

e 
(7.5) 

also known as the slow pseudopotential, felt only by the electrons. The 

electrons tend to assume a Boltzmann distribution n 
e = noe-U'kTe, but the 

ions pull them back partially, through the amibpolar potential @ and a 

corresponding ambipolar electric field -V@, which always appears if elec- 

trons and ions are acted upon with different forces. The ambipolar 

potential 9 restores electric quasineutrality, and we obtain a distribu- 

tion of the electron and ion concentrations 

U-e$ e@ -- 
n e = noe --=n. =noe kTi kT 1 

e 
(7.6) 
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&om the equality of the two exponents in Equation (7.6) we infer that 

v-elp=s!k- u 
Te Ti - Te+Ti - (7.7) 

This yields the final form of the spatial dependence of the carrier con- 

centration 
T 

n = n. = noes k(Te+Ti) (7.8) 
e 1 

which has been used in Equation (1.10). 





VI. SUMMARY AND CONCLUSIONS 

During the effort reported herein, investigation concerning the 

properties of a radiofrequency discharge of a special configuration, 

called ENRAD, were made. The results obtained were compared to measure- 

ments previously obtained with a pulsed high voltage discharge employing 

the same configuration. 

The observations made during these investigations are summarized as 

follows: 

1. Emission of neutrons by the RF discharge was observed. 

2. Indications of some weak x-ray emission were also obtained. 

3. A visible plasma structure consisting of pairs of disks separated 

by a dark sheath was observed. 

A model to explain the observed phenomena was proposed. This model de- 

scribes formation of plasma cavitons caused by "digging in" of the applied 

RF field. The condition for this to occur is that the applied frequency 

is equal to the plasma frequency. 

The caviton is a plasma region of drastically reduced density sur- 

rounded by steep gradients in electric field and charge carrier density. 

Charged particles trapped inside the caviton can obtain high energies due 

to these field gradients. They may escape from the caviton and bombard 

the surrounding high particle density walls. The resulting collisions 

are sufficiently energetic to cause nuclear reactions to take place. 

It is concluded that one of these reactions is the DD reaction causing 

neutrons to be emitted. 

There is some experimental evidence these nuclear reactions take 

place, especially during the collapse of the cavitons. This is con- 

cluded from the fact that introduction of small concentrations of nitro- 

gen into the discharge increase the neutron yield. 

111 
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It is also concluded that in principle these cavitons are capable 

of emitting collimated, maybe even coherent, x-rays. This could be 

especially shown for cavitons formed at higher voltages. 

The conclusion is that the ENRAD configuration is a plasma contain- 

ment which is capable of producing nuclear reactions at high particle 

densities and low temperatures. The applied electric fields are modest. 
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A series of radioactivity measurements have been performed for a 

number 'of high purity gold and indium foils which have been placed into 

positions around the deuterium gas discharge device for varying periods 

of time while the device was operated. The objective of the measurements 

was to monitor the device for neutron emission, which had been reported 

by others; having been deduced from evidence attributed to neutron inter- 

actions in detector media or radioactivation of metallic detector foils or 

disks (coins) which were subsequently counted. 

The detector system used in the measurements,as shown in block diagram 

form in Figure 1, consisted of well-shielded, high efficiency beta-gamma 

scintillation detectors with attached instrumentation combined into a beta- 

gamma absolute coincidence spectrometer. The beta detector was CaF2 scin- 

tillation crystal, while the gamma detector used was a NaI(T1) scintillation 

crystal. Beta and gamma ray singles counts (N N 
8 Y 

) and beta-gamma coinci- 

dence counts NBV (or counting rates) were measured with single channel and 

coincidence analyzers, while at the same time, the ungated and gated gamma 

ray pulse height (energy) distributors were measured with a multichannel 

pulse height analyzer. 

The beta-gamma coincidence system as described, and shown in the figure, 

was selected to provide a high degree of selectivity for lg8Au , through its 

100% branching through the beta-gamma cascade and the systems ability to 

probide a direct value for the lg8Au source strength N II' i.e., N l N /N 
B Y BY= 

ND. 
Radioactivation of pure indium and gold, such as the foils used, would 

form two general types of radionuclides, depending on the energy group 

characterizing the neutrons; .one for thermal and the other for fast neutrons. 
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FIGURE 1 BLOCK DIAGRAM OF ELECTRONICS USED WITH THE B-Y-SPECTROMETER 
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The thermal neutron group, in general, form y or negatron decay species, 

through the (n, y) reaction, while the fast neutron group form either 

electron capture (EC) or positron decay radionuclides by the (n, 2n) reaction. 

The principal (n, y) species formed for In and Au are the 54-minute 

116m In and the 2.7-day lg8Au radionuclides . The former emits several gamma 

rays following its negatron decay with energies (W branching) ay 4.7 (36%), 

819 (17%)m 1090 (53%), 1293 (80%) keV, while the latter exhibits only one 

gamma ray at 411 keV (100%). 

The (n, 2n) fast neutron induced reaction products for In would be 

derived from 

(4.23%)l131n(n, 2n)112m In(20.7 min) IT(156 keVy) 

112 In(14.4 min., B-(44%), 6+(22X), EC (34%) 

511 keVy (44%) 
617 keVy (6%) 

and 

(95.77%) 'l'In(n, 2n)114m In(SO-day) IT(96.5%)(191.6 keVy's) 

EC(3.5%) 724, (58 keVy's) 

'141n(72 sec.) B- (98%), B+ (.004%), 1299 keV (.2%) 

Gold (n, 2n) reaction products are those of 196 Au and 1g6mAu : 

(100%)1g7Au (n, 2n) lg6mA~ (9.7hr) IT (175 keVy) 

lg6Au (6.1 day) g-(6%)-426 keV y-ray EC (93%) 688.7 
(26%), 355.7 (67%) kevy's 

B++(5 x 10 -5%> 

A common component introduced into gold coins is copper, which forms 

and (n, y) 12.8 hour 64 Cu positron activity (B+ 19%) by means of thermal 

neutron absorption. The fast neutron group would also produce the same 

positron activity, but would, in addition produce 9.76-minute 62 Cu, i.e., 

(30 97f5cu . 0 ( n, 2n)64Cu (12.8 hr.) B-(38%) - no gamma rays; EC (43%) - 
1340 keVy (.5%); @++(19%> - 511 keV 
annihilation gamma. 
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(69.1%)63Cu (n, 2n) 62Cu(9.76 min.) fl+ (97%) - 511 keV annihilation 
gamma. 

Thus, in general, positron annihilation observed in the decay of pure 

indium is possible but for gold it would have to be due to activated im- 

purities, one of which could be copper, which could be produced with either 

thermal or fast neutrons. The shorter lived copper radionuclide 62 Cu(9.7m) 

would be indicative of fast neutron activation since it can be produced only 

by the fast neutron (n, 2n) reaction. 

The first radioactivity measurements were made with a gold coin, 

several gold foils and several indium neutron detector foils, which had 

been placed around and near the discharge device for approximately 12 hours 

of operation. The gold, having a lifetime of 2.7 days, would allow.for 

longercountingtimes, while the indium foils with a lifetime of 54 minutes, 

should provide higher counting rates for shorter activation periods. 

For the firstmeasurementsthe discriminator for the CaF2 beta ray 

detector was adjusted high enough to exclude output pulses due to lg8Au 

gamma ray interations in the thin CaF2 detector. This assured only beta- 

gamma gold coincidence counts could occur. Even though a low level back- 

ground due to 137 Cs gamma rays was observed in the ungated singles gamma 

spectrum, the gated (coincidence) spectrum, however, was essentially free 

of effects due to the 137 Cs gamma rays. 

A series of background counts for comparison were obtained prior, 

during, and after the initial measuremtns. The Au and In foils were counted 

before and after their exposure to the operating deuterium discharge. After 

a delay due to cross-town transport, the In foils were counted first due to 

their shorter lifetime (54 min.), with the longer lived lg8Au (2 7 days) . 

being held for later counting. The first counts were for lo-minutes, how- 

ever the total counts obtained were marginal for satisfactory statistical 

evaluation. To improve counting statistics, the In foils were combined (as 
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were the Au foils later) and the counting interval was extended to 40 minutes. 

The counting schedule is summarized in Figure 2. The obtained results are 

plotted in Figures 3, 4, and 5, along with the background counting results. 

The first of the indium foils counted, In 11002, exhibited counting 

rates approximately equal to the average values of the background. However, 

the next two foils counted. numbers 001 and 003, both exhibited counting 

rates considerably (significantly) above the background average values. 

Also, when these foils were combined with #002 and counted for a period of 

40 minutes, the counting rates observed were again above the considerably 

average background values. 

When the smoothed (3-point) spectra, obtained simultaneously with the 

counting rate data, as well as that of the background are viewed, each is 

observed to exhibit spectral features at approximately channels 38 and 75, 

where the latter peaked feature has previously been shown to be due to the 

662 keV gamma ray from a 137 Cs contribution of the counter-shield system. 

(See Figure 6) Based on using the 137 Cs peak as an internal standard, the 

centroid, or central channel of the peak distribution, of the other peaked 

features is shown to fall at approximately 340 keV. In addition to these 

features, which appeared in the background spectrum, indium foils numbered 

001 and 003 exhibited additional features centered at approximately 

channels 46-48 and 55-56, respectively, while the combined foil 40-minute 

spectrum exhibited the peak at channels 46-48. (See Figure 8) 

A separate measurement performed with an indium foil which had been 

activated by exposure to a thermalized 5 Ci Pu-Be source yielded a peak 

centroid for the 417 keV gamma ray of 116m In(54 min.) at channel 46. A 

gamma ray spectrum acquired with a 22 Na source yielded a peak centroid for 

the 511 keV positron annihilation peak at approximately channels 74-76. 

(See Figure 8) 
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As summarized in Table I, it was observed that indium foil f 002 

exhibited neither counting rates greatly different from background nor 

spectral features not found present in the background gamma ray spectrum, 

However, indium foils numbered 001 and 003, whose counting rates were 

significatly greater than background also exhibited spectral features that 

were not found present in the background, Foil # 001 exhibited two such 

features, one in the channel range of the 417 gamma ray peak of 116m In and 

the other in the range of the 511 keV positron annihilation peak. Yet, 

only the latter appreared in the spectrum of foil # 003, while only the 

former appeared distinctly in the spectrum for the combined foils. Further, 

it should also be noted that the 54 minute 116m In activity is produced 

predominantly by thermal and/or epithet-ma1 energy neutrons, while positron 

activity is most frequently associated with charged particle or fast neutron 

((n, 2n)) induced reactions or high energy gamma ray induced electron- 

positron pair formation. 

The counting rate obtained for the 40-minute measurement of the gold 

coin (which was started after two (2) hours and eighteen (18) minutes waiting 

time) was 2.4, 1.29 and 2.31 times larger than the average values measured 

for the background for the beta, gamma and beta--gamma counting systems, 

respectively. However, for the later and longer counts, i.e., 800 minute 

count (Au coin waiting time was T 
W 

= 7 hrs. + 16 min.) the counting rates 

observed were approximately equal to or less than background and had values 

that were within 30 of the background counting rate, indicative of little 

or no sample contributed radioactivity. The same characteristics is seen 

to hold for the gold foils which had a waiting time Tw = 44 hrs. + 19 minutes. 

This suggests that any activity that may hve been present in the gold coin 

or foils, would have had to be quite short lived with respect to the 2.7 

day lifetime of neutron activated lg8Au . 
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COUNTS 

In f 001 Wd ,yG ,BG >BG 

--- 
In # 002 (1Om) SBG QBG SBG 

--- 
In # 003 (1Om) >BG >BG >BG 

TABLE I 

SUMMARY OF In FOIL COUNTING RESULTS 

SPECTRAL FEATURES 

335, 406, 515, 662 keV (Cs-137) 

340, 505, 662 keV (Cs) 

340, 483, 662 keV 

Combined (40 min.): 
-- -- 
>BG >BG >BG 

Background (40 min.): 

335(l), 414, 662 keV 

335(s), 662 keV 
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The ungated gamma spectrum obtained with a 40 minute count of the 

gold coin at 16:45, 12 April 1981, (s 2% hrs. wait), exhibited no clearly 

distinguishable spectral features not seen in the other ungated gold 

spectra for the longer counting periods and at later times, other than 

the peak at channel 38 (or 340 keV). The 137 Cs gamma peak and spectral 

features are again sharply defined. 

The spectra obtained during the long term counting measurements for 

the gold coin and foils showed little other than the 137 Cs peak for the 

ungated gamma ray spectra, however the smoothed gated spectra exhibited 

other features, these being the channel 38 peak (s 340 keV), as seen earlier, 

and the channels 55-56 peak (% 511 keV), also seen earlier. No 137 Cs peak 

contribution was observed as can be seen in Figure 9. The same was true 

for the spectra obtained with the multiple gold foil sample, as was shown 

in Figures 10 and 11. Table II summarizes the gold-coin activation measurements. 

The failure to observe the 411 keV 198 Au gamma ray peak in contrast to 

the apparent radioactivation of the Indium foils, resulted in the decision 

to choose indium foils as the detector system for the second series of 

measurements. 

The beta-discriminator was lowered to better accomodate the lower energy 

of the indium beta rays. This led to an approximately doubled beta counting 

rate sensitivity. 

For counting system calibration and set-up, a set of indium foils were 

activated with both a 5 Ci PuBe source and a small 252 Cf source (B = lo2 n/cm2 

seconds) and the samples counted. The system showed excellent sensitivity 

for the indium activity, however, the 137 Cs gamma ray background persisted as 

can be seen in Figures 12 and 13. A careful wash-down with a detergent 

successfully removed most of the 137 Cs activity, especially its effect on 

the gamma ray spectra. The results are shown in Figure 14. 
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TABLE II 

SUMMARY OF GOLD DETECTOR COUNTING RESULTS 

COUNT RATE SPECTRAL FEATURES 

NB Nr NBY 

Au Coin 40 min. 2.42BG 1.29BG 2.31BG 40m (ungated) 340 keV, 662 keV 

800 min. 0.92BG 1.06BG .78BG s36 hrs. (ungated), 662 keV 

340 keV, 511 keV (gated) 
Au Foils 

800 min. 0.86BG 1.03BG .89BG ungated , 662 keV 

gated, 511 keV 

19 
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It should be noted in Figure 14, the gamma spectra of an activated 

In foil and that of background, the peaks observed previously at 662 and 

approximately 340 keV, are absent. This result substantiates that the 

shields were cleaned thoroughly. However, peaks arising from activation 

of 24Na (15 hrs ) do appear . , primarily due to the samples having been 

left on the 252 Cf activator set-up for several days, allowing the 24Na to 

build up further toward its asymptotic limit, while the indium activity 

remained essentially constant. This, it appears likely that the Q340 keV 

peak may also be part of the systems response to the background. 

The cleaned and adjusted system was tested, calibrated and then 

transferred to RTS Laboratories for a new series of foil exposures.and 

measurements to be undertaken. 

On 13 May, 1981 the D2 discharge was operated for one (1) hour with 

the In foils in place. The In detector foils were then transferred to the 

counter and counted for a 40 minute period. 

The results of the first measurement did not appear to differ signifi- 

cantly from background. Also, during a background count immediately following 

the first measurement, it was noted that the beta and coincidence counters 

would intennittantly count at extremely high rates, resulting in their total 

counts for the period ofmeasurementsreaching values of 50 to 100% higher 

than previous values, attempts to identify the sources of the spurious counts 

were unsuccesful at first. The operation of the counting system was 

monitored throughout the day of 14 May and up the point when the high frequency 

for the discharge was turned on. The noise source had apparently disappeared 

and the counting rates due to background was observed to be less than that 

at the regular location of the equipment (the University of Florida). 

In Figure 15 the indium foil spectrum is plotted along with calibration 

curves and peaks from a 22Na source (511 keV), 137Cs and 6oCo. No obvious 

expression of peaks observed in previous measurements is shown. The information 
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plotted was obtained when the indium foils were used as flux detectors on 

the second round of experiments, 13 May 1981, with the D2-discharge (conditions 

were not found to be optimum for the discharge). 

For comparison, the background spectrum is shown in Figure 16. Many 

of its features appear to have contributed to the other measurements. The 

final figure, Figure 17, shows a peak at approximately 511 keV. This latter 

spectrum was obtained on 15 May 1981, for a set of three In foil detectors, 

which has been exposed in the vicinity of the D2 discharge for a period of 

approximately 1 hour. Even though the total counts, especially the beta 

and coincidence counting rates exhibited a sensitivity to low amplitude, 

high frequency "noise" pulses appearing on the oscilloscope display, the 

gamma ray spectra appear to be relatively free of perturbing aspects, with 

the principal characteristics observed being the peak at 511 keV. 

Conclusions 

The counting rate measurements completed thus far have exhibited certain 

results that have been significantly greater that the average value of the 

observed background counting rates, indicative of radioactivity sources other 

than background. 

Spectralmeasurementsthus far have failed to disclose characteristics 

expected for thermal neutron activated gold, both in terms of peak energies 

and lifetimes. Spectral features characteristic of thermal neutron activated 

indium were observed for some but not all of the indium foil spectra. How- 

ever, peaks have been observed in the spectra at 511 keV, the gamma ray 

energy associated with the positron annihilaiton process. Also, the apparent 

lifetime of the apparent radioactivity appears to be distinctly shorter than 

that due to lg8Au (2.7 days). 

Thermal neutron activated 64 Cu (12.8 hrs.) can yield positrons from 

which annihilation radiation could arise, should copper be a constituate of 
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the Au coin or foil. However, its lifetime too does not correlate with 

some of the characteristics observed. 

Fast neutron activation through the (n, 2n) reaction can produce 

positron activity in many materials, yet gold's (n, 2n) reaction products 

are principally electron capture (EC) or beta minus decay species. 

Indium has an (n, 2n) positron emitting product but from its least 

abundant isotope. 

Our efforts this far have posed further questions without providing 

any absolute answers. More carefully controlledmeasurementsare needed 

to assure that the background contributions are better quantitated. A 

series ofmeasurements, including replicates, need to be performed. 

These should be counting rate, spectraland time dependent. Measurements 

should also be made with the higher resolution germanium detectors. 

The apparent cross sections for the reactions that may have produced 

the observations must be relatively small, causing their measurement to 

be difficult. This is also probably true for the intensity of whatever 

process that may be responsible for the apparent radioactivation. Thus, 

subsequentmeasurementsmust be done very carefully in order to optimize the 

exposure times, measurement processes, data storage, retrieval, output in 

graphical and-tabular forms. 
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